A sharp threshold for minimum bounded-depth/diameter spanning and Steiner trees
نویسندگان
چکیده
In the complete graph on n vertices, when each edge has a weight which is an exponential random variable, Frieze proved that the minimum spanning tree has weight tending to ζ(3) = 1/13 + 1/23 + 1/33 + · · · as n → ∞. We consider spanning trees constrained to have depth bounded by k from a specified root. We prove that if k ≥ log2 log n+ω(1), where ω(1) is any function going to ∞ with n, then the minimum bounded-depth spanning tree still has weight tending to ζ(3) as n → ∞, and that if k < log2 log n, then the weight is doubly-exponentially large in log2 log n − k. It is NPhard to find the minimum bounded-depth spanning tree, but when k ≤ log2 log n−ω(1), a simple greedy algorithm is asymptotically optimal, and when k ≥ log2 log n + ω(1), an algorithm which makes small changes to the minimum (unbounded depth) spanning tree is asymptotically optimal. We prove similar results for minimum bounded-depth Steiner trees, where the tree must connect a specified set of m vertices, and may or may not include other vertices. In particular, when m = const× n, if k ≥ log2 log n+ ω(1), the minimum bounded-depth Steiner tree on the complete graph has asymptotically the same weight as the minimum Steiner tree, and if 1 ≤ k ≤ log2 log n− ω(1), the weight tends to (1−2−k) √ 8m/n [√ 2mn/2k ]1/(2k−1) in both expectation and probability. The same results hold for minimum bounded-diameter Steiner trees when the diameter bound is 2k; when the diameter bound is increased from 2k to 2k + 1, the minimum Steiner tree weight is reduced by a factor of 21/(2 k−1).
منابع مشابه
The Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملA note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points
We give a tight analysis of the MST heuristic recently introduced by G.-H. Lin and G. Xue for approximating the Steiner tree with minimum number of Steiner points and bounded edge-lengths. The approximation factor of the heuristic is shown to be one less than the MST number of the underlying space, de ned as the maximum possible degree of a minimum-degree MST spanning points from the space. In ...
متن کاملOn Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below
The minimum spanning trees problem is to find k edge-disjoint spanning trees in a given undirected weighted graph. It can be solved in polynomial time. In the k minimum spanning trees problem with diameter bounded below (k-MSTBB) there is an additional requirement: a diameter of every spanning tree must be not less than some predefined value d. The k-MSTBB is NP hard. We propose an asymptotical...
متن کاملApproximating the Weight of Shallow Steiner Trees
This paper deals with the problem of constructing Steiner trees of minimum weight with diameter bounded by d, spanning a given set of vertices in a graph. Exact solutions or logarithmic ratio approximation algorithms were known before for the cases of d 5. Here we give a polynomial time approximation algorithm of ratio O(log) for constant d, which is asymptotically optimal unless P = N P , and ...
متن کاملEncoding Bounded-Diameter Spanning Trees with Permutations and with Random Keys
Permutations of vertices can represent constrained spanning trees for evolutionary search via a decoder based on Prim’s algorithm, and random keys can represent permutations. Though we might expect that random keys, with an additional level of indirection, would provide inferior performance compared with permutations, a genetic algorithm that encodes spanning trees with random keys is as effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008